skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Köhl, Armin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Global- and basin-scale ocean reanalyses are becoming easily accessible and are utilized widely to study the Southern Ocean. However, such ocean reanalyses are optimized to achieve the best model–data agreement for their entire model domains and their ability to simulate the Southern Ocean requires investigation. Here, we compare several ocean reanalyses (ECCOv4r5, ECCO LLC270, B-SOSE, and GECCO3) based on the Massachusetts Institute of Technology General Circulation Model (MITgcm) for the Southern Ocean. For the open ocean, the simulated time-mean hydrography and ocean circulation are similar to observations. The MITgcm-based ocean reanalyses show Antarctic Circumpolar Current (ACC) levels measuring approximately 149 ± 11 Sv. The simulated 2 °C isotherms are located in positions similar to the ACC and roughly represent the southern extent of the current. Simulated Weddell Gyre and Ross Gyre strengths are 51 ± 11 and 25 ± 8 Sv, respectively, which is consistent with observation-based estimates. However, our evaluation finds that the time evolution of the Southern Ocean is not well simulated in these ocean reanalyses. While observations showed little change in open-ocean properties in the Weddell and Ross gyres, all simulations showed larger trends, most of which are excessive warming. For the continental shelf region, all reanalyses are unable to reproduce observed hydrographic features, suggesting that the simulated physics determining on-shelf hydrography and circulation is not well represented. Nevertheless, ocean reanalyses are valuable resources and can be used for generating ocean lateral boundary conditions for regional high-resolution simulations. We recommend that future users of these ocean reanalyses pay extra attention if their studies target open-ocean Southern Ocean temporal changes or on-shelf processes. 
    more » « less
  2. null (Ed.)
    Abstract The origins of an observed weakly sheared nonturbulent (laminar) layer (WSL), and a strongly sheared turbulent layer above the Equatorial Undercurrent core (UCL) in the eastern equatorial Pacific are studied, based mainly on the data from the Tropical Atmosphere and Ocean mooring array. Multiple-time-scale (from 3 to 25 days) equatorial waves were manifested primarily as zonal velocity oscillations with the maximum amplitudes (from 10 to 30 cm s −1 ) occurring at different depths (from the surface to 85-m depths) above the seasonal thermocline. The subsurface-intensified waves led to vertically out-of-phase shear variations in the upper thermocline via destructive interference with the seasonal zonal flow, opposing the tendency for shear instability. These waves were also associated with depth-dependent, multiple-vertical-scale stratification variations, with phase lags of π /2 or π , further altering stability of the zonal current system to vertical shear. The WSL and UCL were consequently formed by coupling of multiple equatorial waves with differing phases, particularly of the previously identified equatorial mode and subsurface mode tropical instability waves (with central period of 17 and 20 days, respectively, in this study), and subsurface-intensified waves with central periods of 6, 5, and 12 days and velocity maxima at 45-, 87-, and 40-m depths, respectively. In addition, a wave-like feature with periods of 50–90 days enhanced the shear throughout the entire UCL. WSLs and UCLs seem to emerge without a preference for particular tropical instability wave phases. The generation mechanisms of the equatorial waves and their joint impacts on thermocline mixing remain to be elucidated. 
    more » « less